

Quench Protection for High Field Magnets (>12T) (Accelerator Type)

A.D. McInturff
Superconducting Magnet Program
Lawrence Berkeley National Laboratory
May 24 - 26, 2000

Conditions assumed in talk

- Protection to be accomplished by a close proximity heater
- Highly efficient coil winding package $J_{cu} > 1000$ A/ mm²
- Examples given will be limited to Nb₃Sn coils. "Should be applicable to other A-15's"
- Heater constructed composites of Kapton/SS(cu)/ Kapton plus glue

Definitions

Conductor Miits $\equiv 10^6 \,\text{Amp}^2$ -sec to reach 450 K

a) measured

b) adiabatic calculation

Critical ramp rate

Rate of current change at which

conductor exceeds its critical

temperature of the average winding

field in a 0.1 operating current loss

Minimum ProtectionWinding ≡

volume transitioning

That length of conductor which will result in a L/R time constant that will

stay below the conductor Miits budget

Design input needed

Conductor

dimensions
composition
geometry
critical current, field, and temperature profile

Windings

operating current, (load line)
geometry
electrical parameters
magnetic parameters

Note: Any of these can be obtained by measurement (all the better) or calculated. Operational characteristics LHe II or I, open or closed winding.

Comment: (will not consider cryostable operating point coils due to time constraints)

Typical Design of a heater for a Nb₃Sn Race Track Coil

Conductor Parameters:

26 strand cable

0.8 mm strand diameter

 $J_c(non-cu) = 2000^+ \text{ amps/mm}^2$

Typical design input:

Quench output page

Typical Miits Curve:

Quench's Miit's Curve RD3

First order heater considerations RD3:

Induct. = 18mh

L/R = ?

at 10kA/turn yields 100 Miit's/sec

Miit's limit "Quench" = 12.4

=> 125 milliseconds

-_40 "

detection & diffusion

85 "

=>0.17 seconds = t(effective)

 $R = 0.018/0.17 \sim 0.1$ ohms

Outer coil's room temperature resistance = 0.75 ohms

20K R(expected) = 0.02 ohms

20K R(measured)= 0.058 "

 $=> \frac{1}{4}$ of the coil driven normal will work

"Quench" code input/output for Miit's

									·
COMPANIENT PROFE	RTTBS								
FRAC	THETA	A AFX	B	BEX	· C	CEX	D	DEX	BEAG
.4055		500 07 .005		2.6900	.90000 05		00000 00	.0000	1 0000
		50P 07 .000		2.6900	.2300E-02		00005-00	.0000	1 0077
		:80m 65 - 1 235			.3000E+01		12000-03	1.0000	2,0000
0715	.00 17	000E-05 120	0 16701-11	2.4900	9000 <u>E-05</u>	3 0000	000000-00	,0000	_ 0000
0710	40.00 27	700E-05 120	0 1670E-11	2.6900	.2300E-02	L 5000 :	0000E-00	.0000	2,0000
		700E-05 120		.0000	.5000E+11		L2772-02	1.0000	2 5055
312)		00E-01 000E+11 .000			.1006E-03		9999E-00	.0000	5000
		005 E+11 .055			.4400E-02		00002-00	.0000	9000
\$060	.00 61	.00E-04 .005	9 .0000E+00	.0000	.7400E-04	2.2700	00.00 5 +00	.0000	5055
3060	00.00 61	.00E-54 .000	♦ 0000€±(*)	.0006	.5400E-00	2400	0000E+00	.0000	0000
1									
TNITTAL CURRENT	 10000.00 	TNIT: ERCT.	I0550	GAMMA	.00 5	. 05000000-300000	00.00	COST INT.	.0166
Harri Ar Curkking	- 10000.00	(01) · E4655	¥, >	IAMPIPI-		xi (\dan)		3.11 IJu 1.	
MIT. VELOCITY-	3 710 .33	UNIT CESS ARE	A1989CO	TN3=TF47.	राजाभागात्राहरू देखाया स	- 4.5000			
ATIPHA - INDS	99 TXITT	י. א עדיסטואע אי	8.7250 RPSTTA	.7800	o INTT.	Y VELOCITY- 40	601.639C		
			and the second second						
X COST DIMERSES	NI- 8.0	и у сото влив	MATON- 0.05	N : ::	тт мемопем—	172.30			
COORDINATES OF .	ACUPCR Y-	1.50 Y-	.00 7 -	96.70					
PROPERTOR DODAY T	тма –	זבידדמו זויים	MAGNETTS FIRES-	117.600K4					
TIME	CONCIDAT	CONT. PROTOTEKO		ENT - POLITA		NURSEY INTO 9:		2.1104.90	1.300.01
.001000,	9990.00.	.4357955.04.			Λ,		11.	5 DI.	
.002000.	6467.92,	. 9303260-94.	.1046623462.		U.	3 30.	62.	7 15.	2.
.ციუიინ.	9997.93.	. 1755167-02	744353+03.			17 55.	76.	8 94.	₹.
.C040D5.	5950.66,		.3/43073103.					42.	
.005090,	5993.72,					2.1	7-1	10 36,	ر. . ج.
			.3159733102.			44-40. 4 -			
.006000.	9999.07,		.30773373102.			82 03. 6 .		34 38.	4.
.007000.	5959.862		,4574033+02.		0.	05.10, 8.º		20 22.	.7,
.000000,	9497.49,	11111532-03.	.52:3162+02.		U. L	11.42. 11.3	4.	Ni 27.	. 9.
.000005.	9997.192		.503935E+02.			41.71, 14.3		. 82 دد	131
.010000.	9995.33.		.5744098+02.			72.06, 17.3		36 UA.	1.7.
.011000.	9999.10,		,596794 <u>Б</u> +02.			04.05, 20.4		50 OE.	1.1.
.012055.	9993.79,		.8107538(02.			30.39, 23.9		N9 8).	1.2.
.913000,	9992.24,		.0390[06102.			75.41/ 27.1		41 4 7.	L 3.
.014000,	6965.49,	3157125 02,	.889394T102,		ο, ε	15.23. 31.	55	(2.99)	1.52
.015000,	9938.60,		.8991537103			57.30, 35.		47.	1.5,
.G16000)	9986.30	.397924E CD.	.509382F102.			97.01, 39.1		15 92.	1.5,
.017000,	9889.87	.427814F CD.	.576431F102.			35.5°. 43.°		(7.35.	1.7,
.019000,	9981.21,		.8870000107.			78.93, 47.1		(9.75,	1.7,
.019000,	9978.33,	.519945E CD.	.9438566102.		ባ, 5	17.00, 51.4	na, :	50.14,	1.5,
.020005	9975.21	.562637E C2.	.934069F103.		n. 5	50.70, 56.	17.	71.70.	7.0.
.022000,	9971.35,		.326913F10Z			53.4/, SC.		13.85,	7.1,
.022005.	9908.34,		.520076F107.			17.78, 54.1		37.10.	2.5
. 525000.	9964.38,		.816375F(DZ)			53.3), 59.		19.72,	2.3,
.024000.	996D.25,		.512351F(02)			40.09, 74.		ল্ড.পদ.	2.4.
.022000.	9995.85.	794451E 02.	.5080881102,	, .	0. 7	68.14, 71.	13.	59 (6.	2.5.
.029000.	9951 18.	. 815080F 02.	.50a092F:09.		o. o	37.53. (6)		50 (7)	3.8.
.027000.	9915 77.					68,5%. 8%.;		vc 7n.	2.7.
	9940 57.								
.022000.			.501354 p .00.			10.03. 91.		£2 00.	2 %
. 5339000,	9975 01.	- · · · · · · · · · · · · · · · · · · ·			0, 9	\$ 4 .30, 100.0	oa, s	الاد.دا	4.3.
.030000,	0930 5%.		407546E-02.		0, 10	50.51, 101.	75, s	54.68,	3.0.

RD-3 outer winding cable Miit's Curve

RD3 outer Coll MilT's vrs Peak Temperature

Protection of D20

A very conservative approach was taken:

70% of the magnet was under heaters
The power levels were for SF operation

Layer 1 = 53 watts/cm²

Layer 2 = 23 "

Layer 3 = 29 "

Layer 4 = 27 "

The data for Quench was:

The Miit's Curve:

Miit's Curves for C0/D0 Quads, Tev, & D20

Integrated Stainless Steel Specific Heat versus Peak Temperature

Table

	lable
Temperature	Energy/unit volume
Adiabatic(K)	joules/cubic
	centimeter
100	80
200	316
300	642
400	1034
500	1494
Kapton Failure 770	2700
Typical Resistivity (Stainless Steel)	50 micro-ohm-cm
RRR	1.5

Typical Time constants (1/e)

30 – 10 milliseconds Heater pulse

Typical detection plus thermal

40 milliseconds Diffusion time at 70% short Sample

(typical peak Miit value)

Typical heater Power supply 450v

Parameters (x2 if stacked) 2 to 20 millifarad

Summary of typical process

Obtain Miits curve for magnet Calculate from "Quench" code or Measure

the 450K point

Calculate minimum coil volume I (operate), L (millihenries)

Design heater area greater than Heater area calculated

that to switch min. coil vol.

Heater design resistances calculated ohms to few 10's of ohms

Temperature (heater) targets 150K to 200K

Wattage (heater) at the surface $\geq 20 \text{w/cm}^2$ for LHe & ≥ 40 for SFHe

Time (heater) constants 30 millisec. to ≤ 100 millisec.

An efficient heater should:

Include an active length (non-cu plated) ≥1 cable transposition length

Minimum heater thickness (ss) 13 micron preferred, but 25 micron is normal

Min. thickness Kapton under layer and/ or 15 microns (≥3 kV checked)

Alumna filled Kapton (x2 thermal conduct.) " 3kV?

Can include diagnostic wiring traces